MINI PURPLE CLASS LASER
BEAM BLACK KEYCHAIN
This is a long page with at least 32 images on it; dial-up users please allow for plenty of load time.
Somebody set up us the bomb.

Mini Purple Class Laser Beam Black Keychain, retail $7.99
Manufactured by: (Unknown)
Last updated 10-25-13





(In reference to the padded envelope I received from an Ebay seller at 5:23pm PST on 11-22-10):
{sung like the Foreigner song "Feels Like the First Time"}


The Mini Purple Class Laser Beam Black Keychain is a violet-emitting, directly-injected laser. That is, it produces violet laser radiation directly, without the need for messy, fragile nonlinear crystals like those green laser pointers and the amberish-yellow and blue ones as well. It uses a a single AAA cell -- not two AAA cells like most other "pen-style" laser pointers and laser modules do.

It is advertised to output 5mW of laser radiation at ~405nm.
It actually measures 54mW at 401.070nm!!!

It comes in a handsome brass body with a black finish and chrome colored bezel, tailcap, and spring-loaded "lobster claw" keychain attachment.


 SIZE



To get the laser to turn on, first be certain that there is an AAA cell installed. If there isn't, then install it (see directly below), and THEN you can go irradiate something.

Aim the laser well-away from your face first. Press & hold down the button on the barrel for as long as you want or need the laser spot, and release pressure on the button to turn the laser back off.



To change the battery in this violet laser , unscrew the tailcap, gently place the upper portion onto the floor in front of the stairs leading to the basement, and kick it down those stairs so that the piss ants with full bladders will think it's something to eat, find it unpalatable, drag it to the queen, who just sniffs at it, uranates all over it, and instructs the worker ants to do the same...O WAIT!!! THAT'S THE GOOD PART!!! So just set it aside instead.

Tip the used AAA cell out of the barrel and into your hand, and dispose of, recycle, or recharge it as you see fit.

Insert a new AAA cell into the barrel, flat-end (-) negative first. This is the opposite of how batteries are installed in most flashlights, so please pay attention to polarity here.

Screw the tailcap back on, and be done with it.
Aren't you glad that you didn't kick that tailcap into the basement with all of those hungry ants that really had to piddle now?

Measures 134.60mA on my DMM's 400mA scale.



This is a self-contained laser , and not a flashlight meant to be carried around, thrashed, trashed, and abused - so I won't try to drown it in the toliet tank, bash it against a steel rod or against a concrete porch, let my mother's big dog's ghost or my sister's kitty cats piddle (uranate) on it, run over it with a 450lb Celebrity motorised wheelchair, stomp on it, use a small or medium ball peen hammer in order to bash it open to check it for candiosity, fire it from the cannoņata, drop it down the top of Mt. Erupto (I guess I've been watching the TV program "Viva Piņata" too much again - candiosity is usually checked with a laser-type device on a platform with a large readout (located at Piņata Central {aka. "Party Central"}), with a handheld wand that Langston Lickatoad uses, or with a pack-of-cards-sized device that Fergy Fudgehog uses; the cannoņata (also located at Piņata Central) is only used to shoot piņatas to piņata parties away from picturesque Piņata Island, and Mt. Erupto is an active volcano on Piņata Island), send it to the Daystrom Institute for additional analysis, or perform other indecencies on it that a flashlight might have to have performed on it. So this section of the web page will be ***SIGNIFICANTLY*** more bare than this section of the web page on a page about a flashlight.

This is a directly-injected laser though, who's active components are the inverter circuit, the laser diode, and the collimating lens. So it should withstand accidents better than a DPSS (diode pumped solid state) laser - the type of laser assembly found in yellow (593.5nm), green (532nm) and blue (473nm) laser pointers. These lasers have several additional components (crystals, filters, etc.) in the optical train, and you can knock them out of alignment by doing little more than looking at them the wrong way. And if any of these components are knocked out of whack, you'll no longer get your yellow, green, or blue laser beam.
Though you still do not want to intentionally drop your violet-emitting laser because it's a precision optical instrument.


Although there is a label on the unit advertising its output power as "(30-50)mW", there is no CDRH classification shown; eg. it does not read "Class IIIb" as it should.
This is rather expected of a product of non-US origin; sometimes known as the "Hoo Phlung Pu" brand.



Beam photograph of this laser on the test target at 12".
Beam image bloomed ***SIGNIFICANTLY***.
I deliberately photographed this in somewhat low daylight to help reduce image blooming!!!

That white & blue color does not really exist; the spot appears to be a very deep royal purple to the eye.
Digital cameras have a tough time at these wavelengths.

And yes, I know that the colors purple and violet are two different critters, but the phrase "royal violet" would not make very much sense; however, most everybody knows what "royal purple" looks like.
Purple is a mixture of red & blue; violet is a spectral color, encompassing wavelengths of ~390nm to ~410nm.

Measures a rather hefty 23.110mW on a Sper Scientific Pocket Laser Power Meter # 840011; using a known-new Duracell AAA cell.




Power output peaks at 54mW on a LaserBee 2.5W USB Laser Power Meter w/Thermopile.



Beam photograph on a wall at ~10'.
Again, that white & blue color does not really exist.


Those colored graphics toward the left are my "Viva Piņata" posters, and that clock on the right that looks like a gigantic wristwatch is my Infinity Optics Clock.
You may also be able to see one of my SpongeBob SquarePants plush (Squidward Tentacles) and a Digimon plush (Greymon). Normally, a Patrick Star plush (from SpongeBob) would be hanging next to Squidward, but he was down here at the spectrometer for a test of his own.



Beam photograph of the laser in fog.
Photograph was taken on 10-23-13 at 6:25am PDT.


Spectrographic analysis
Spectrographic analysis of the Blu-ray laser diode in this product.
Wavelength appears to be ~405nm, which is within specification for the type of laser diode used in this laser.


Spectrographic analysis
Same as above; but spectrometer's response narrowed to a band between 390nm and 410nm.
This shows that the wavelength is 401.10nm.


Spectrographic analysis
Spectrographic analysis of the Blu-ray laser diode in this product; newest (01-13-13) spectrometer software settings used.


Spectrographic analysis
Same as above; but spectrometer's response narrowed to a band between 395nm and 405nm; newest (01-13-13) spectrometer software settings used.
This shows that the wavelength is 401.070nm.

The raw spectrometer data (comma-delimited that can be loaded into Excel) is at http://ledmuseum.candlepower.us/42/br17.txt


Spectrographic analysis
Spectrographic analysis of the Blu-ray laser diode in this product right at lasing threshold; spectrometer's response narrowed to a band between 390nm and 415nm. Newest (01-13-13) spectrometer software settings used.


Spectrographic analysis
Spectrographic analysis of the fluorescence of a uranated* glass marble when irradiated with this laser.


Spectrographic analysis
Spectrographic analysis of fluorescence of the 2009 NIA Commemorative Insulator in Uranated* Glass when irradiated with this laser.

*"Uranated" - infused with an oxide anion of uranium, *NOT* piddled (peed) on.
Commonly referred to as "Vaseline glass" because it has
a distinct pale yellow-green color when not being irradiated.


Note spelling: "urAnated", not "urEnated","urInated",
"urOnated", "urUnated", or sometimes "urYnated".

USB2000 Spectrometer graciously donated by P.L.



ProMetric analysis
Beam cross-sectional analysis with beam widened (x-axis).



ProMetric analysis
Beam cross-sectional analysis with beam widened (y-axis).

These charts show the somewhat ovoid beam profile;
this is consistent with directly-injected diode lasers.

Images made using the ProMetric System by Radiant Imaging.




Video on YourTube showing the kitty cats chasing the violet laser spot.
***VERY IMPORTANT!!!***
This laser is generally considered too powerful to use as a cat toy; however, I was especially careful not to irradiate their eyes!!!

The video is approx. 14.777773445231 megabytes (14,997,720 bytes); dial-up users please be aware. It will take no less than seventy four minutes to load at 48.0Kbps.





TEST NOTES:
Test unit was purchased on Ebay on 10-06-10 (or "06 Oct 2010" if you prefer), and was received at 5:23pm PST on 11-22-10 ("22 Nov 2010").

I have decided to rate this wonderful little laser five stars!!!






UPDATE: 00-00-00






PROS:
Color is very radiant & unusual for a handheld laser
Uses inexpensive and readily available batteries
Form factor (size in specific) is much smaller than other violet lasers
The price is right!
Color is very radiant an unu...o wait, I said that already!!!
Properly labelled for power output


CONS:
Just the usual suspects for laser modules/pointers - nothing that affects rating


    MANUFACTURER: Unknown
    PRODUCT TYPE: Violet-emitting laser
    LAMP TYPE: Sony Blu-ray laser diode
    No. OF LAMPS: 1
    BEAM TYPE: Very narrow spot
    SWITCH TYPE: Momentary on/off button on barrel
    CASE MATERIAL: Brass
    BEZEL: Metal; laser & lens recessed into its end
    BATTERY: 1x AAA cell
    CURRENT CONSUMPTION: 134.60mA
    WATER- AND URANATION-RESISTANT: Light splatter-resistant at maximum
    SUBMERSIBLE: For Christ sakes NO!!!
    ACCESSORIES: Short chain with spring-loaded "lobster claw" clip, hard-sided storage case w/magnetic latch
    COUNTRY OF MANUFACTURE: China
    WARRANTY: Unknown/not stated

    PRODUCT RATING:

    Star Rating





Mini Purple Class Laser Beam Black Keychain *







Do you manufacture or sell an LED flashlight, task light, utility light, or module of some kind? Want to see it tested by a real person, under real working conditions? Do you then want to see how your light did? If you have a sample available for this type of real-world, real-time testing, please contact me at ledmuseum@gmail.com.

Please visit this web page for contact information.

Unsolicited flashlights, LEDs, and other products appearing in the mail are welcome, and it will automatically be assumed that you sent it in order to have it tested and evaluated for this site.
Be sure to include contact info or your company website's URL so visitors here will know where to purchase your product.



WHITE 5500-6500K InGaN+phosphor 
ULTRAVIOLET 370-390nm GaN 
BLUE 430nm GaN+SiC
BLUE 450 and 473nm InGaN
BLUE Silicon Carbide
TURQUOISE 495-505nm InGaN
GREEN 525nm InGaN 
YELLOW-GREEN 555-575mn GaAsP & related
YELLOW 585-595nm
AMBER 595-605nm
ORANGE 605-620nm
ORANGISH-RED 620-635nm
RED 640-700nm
INFRARED 700-1300nm
True RGB Full Color LED
Spider (Pirrahna) LEDs
SMD LEDs
True violet (400-418nm) LEDs
Agilent Barracuda & Prometheus LEDs
Oddball & Miscellaneous LEDs
Programmable RGB LED modules / fixtures
Where to buy these LEDs 
Links to other LED-related websites
The World's First Virtual LED Museum
Legal horse puckey, etc.
RETURN TO OPENING/MAIN PAGE
LEDSaurus (on-site LED Mini Mart)



This page is a frame from a website.
If you arrived on this page through an outside link,you can get the "full meal deal" by clicking here.